从Leetcode上学字典树

字典树(前缀树)Trie是一种数据结构,用于高效的存储和检索字符串数据集中的键。应用场景:自动补充和拼写检查

Leetcode.208 实现前缀树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class Trie {

private Trie[] children;
private boolean isEnd;

public Trie() {
children = new Trie[26];
isEnd = false;
}

public void insert(String word) {
Trie node = this;
for(int i=0;i<word.length();i++) {
char ch = word.charAt(i);
int index = ch - 'a';
if(node.children[index]==null) {
node.children[index] = new Trie();
}
node = node.children[index];
}
node.isEnd = true;
}

public boolean search(String word) {
Trie node = searchPrefix(word);
return node != null && node.isEnd;
}

public boolean startsWith(String prefix) {
return searchPrefix(prefix) != null;
}

private Trie searchPrefix(String prefix) {
Trie node = this;
for(int i=0;i<prefix.length();i++) {
char ch = prefix.charAt(i);
int index = ch - 'a';
if(node.children[index]==null) {
return null;
}
node = node.children[index];
}
return node;
}
}

/**
* Your Trie object will be instantiated and called as such:
* Trie obj = new Trie();
* obj.insert(word);
* boolean param_2 = obj.search(word);
* boolean param_3 = obj.startsWith(prefix);
*/

这里使用了Trie数组来存储子节点,也可以使用TreeMap来实现

Leetcode.720 字典中最长的单词

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class Solution {
public String longestWord(String[] words) {
Trie trie = new Trie();
for (String word : words) {
trie.insert(word);
}
String longest = "";
for (String word : words) {
if (trie.search(word)) {
if (word.length() > longest.length() || (word.length() == longest.length() && word.compareTo(longest) < 0)) {
longest = word;
}
}
}
return longest;
}
}

class Trie {
Trie[] children;
boolean isEnd;

public Trie() {
children = new Trie[26];
isEnd = false;
}

public void insert(String word) {
Trie node = this;
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
int index = ch - 'a';
if (node.children[index] == null) {
node.children[index] = new Trie();
}
node = node.children[index];
}
node.isEnd = true;
}

public boolean search(String word) {
Trie node = this;
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
int index = ch - 'a';
if (node.children[index] == null || !node.children[index].isEnd) {
return false;
}
node = node.children[index];
}
return node != null && node.isEnd;
}
}

这题是对Trim的完美应用。精辟的在于search()函数中,一旦该字符串的节点路径上存在节点的isEnd属性为假,那么就将该字符串抛弃